Package 'UBCRM'

Title: Simulate and Conduct Dose-Escalation Phase I Studies
Description: Two Phase I designs are implemented in the package: the classical 3+3 and the Continual Reassessment Method (<doi:10.2307/2531628>). Simulations tools are also available to estimate the operating characteristics of the methods with several user-dependent options.
Authors: Benjamin Esterni with contribution from Baboukar Mane
Maintainer: Christophe Zemmour <[email protected]>
License: GPL (>= 2)
Version: 1.0.3
Built: 2024-11-17 05:40:07 UTC
Source: https://github.com/cran/UBCRM

Help Index


UBCRM is a package containing functions to simulate and conduct dose escalation phase I studies

Description

Two designs are implemented in the package: the classical 3+3 and the Continual Reassessment Method. Simulations tools are also available to estimate the operating characteristics of the methods with several user-dependent options.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

Examples

data<- CreData(4)
prior<-c(.05,.1,.15,.2)

# One study simulation
simCrm(prior=prior, firstdose = 2, truerate = prior, cohortsize = 3, target = 1/3,
nptmax = 18, nmaxmtd = 6, nmaxdose = 18, sd = 1.34, approach = "bayes", model = "power",
method = "fpost", nextlevel = "ntarget", upskipping = TRUE, downskipping = FALSE,
lastdose = NA, graphic = FALSE, seed = 20130110)

# N simulations with CRM
# Power model, no up skipping, start at dose 2
res1<- ssimCrm(prior=prior, 100, firstdose = 2, truerate = prior, cohortsize = 3,
target = 1/3, nptmax = 18, nmaxmtd = 6, nmaxdose = 18, sd = 1.34, approach = "bayes",
method = "fpost", model = "power", nextlevel = "ntarget", upskipping = TRUE,
downskipping = FALSE, r = 2, seed=20130110)
res1

# Simulations with 3+3 design
res2<- ssim3p3(truerate=prior, 100, r = 2, seed=20130110)
res2

Functions to calculate the appropriate dose level singletons

Description

Pool of functions to calculate dose level singletons values: aip, ail2 and ait2 calculate sgl in order that E[psy] = prior, ail1 and ait1 calculate sgl in order that psy(sgl,1) = prior.

Usage

aip(p_prior, sd = 1.34)
ait1(p_prior, a=1)
ail1(p_prior, a=1)
ait2(p_prior)
ail2(p_prior)

Arguments

p_prior

Prior toxicity probability.

sd

Standard deviation in case of normal distribution for the parameter.

a

Rate in case of exponential distribution for the parameter.

Value

Numeric length(p-prior)-vector.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>


Creates a CRM dataframe

Description

Creates a n-row summary dataframe indicating the number of treated patients and observed DLTs at each of the n dose-levels. This is the dataframe structure that will be needed in the different functions of the UBCRM package.

Usage

CreData(ndose = 3, dosenames = paste("dose", 1:ndose, sep = " "))

Arguments

ndose

Number of dose levels.

dosenames

A ndose-length character vector of labels for the dose levels.

Value

A ndose * 3 dataframe containing:

dose

Integer value 1..ndose ordering the doses.

npt

Integer count of the treated patients at dose i.

ndlt

Integer count of the observed DLT at dose i.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

updata

Examples

data<- CreData(5,c("5 mg/m2","7 mg/m2","10 mg/m2","15 mg/m2","20 mg/m2"))
data

Dose-escalation with the Continual Reassessment Method

Description

The function gives the next level to include patients following a model-based design. Needs an updated input dataframe with the CreData() structure.

Usage

Crm(Dk, prior, target = 1/3, nptmax = 24, nmaxmtd = 6, nmaxdose = nptmax, sd = 1.34,
approach = "bayes", model = "power", method = "fpost", nextlevel = "ntarget",
upskipping = F, downskipping = F, lastdose = NA)

Arguments

Dk

Study dataframe with CreData() structure.

prior

Numeric vector of prior DLTs probabilities.

target

Target used for the MTD determination.

nptmax

Maximum number of patients to include in the study.

nmaxmtd

Maximum number of patients to be treated at the designated MTD. Assign a high value (=nptmax) to avoid such a stopping rule.

nmaxdose

Maximum number of patients to be treated at the same dose. Assign a high value (=nptmax) to avoid such a stopping rule.

sd

Standard deviation used in case of a normal distribution assumption for the parameter.

approach

Character indicating the estimation method: "bayes" (default value) for CRM or "mle" for CRML.

model

Character indicating the dose-DLT relationship model: "power", "tangent" or "logistic". More informations in the details section.

method

Estimation method for the posterior probabilities. "fpost" (default) estimates the mean of the posterior distribution of the parameter alpha (hat_alpha=E[alpha]) and uses it in psy(hat_alpha,...). "ppostp" and "pposts" directly estimate the mean of the posterior DLT probability. "ppostp" uses prior as singletons whereas "pposts" calculates appropriates singletons (see ail, ait or aip functions).

nextlevel

Character option used for determining the next dose level. "ntarget" (default) if the next level is chosen as the closest level to the desired target (may be higher than target). "utarget" if the next level is the closest level with the restriction to be lower than the target value.

upskipping

Boolean option used for determining the next dose level. If TRUE no level skip in escalation will be allowed. If FALSE (default) the level skips will be permitted.

downskipping

Boolean option used for determining the next dose level. If TRUE no level skip in desescalation will be allowed. If FALSE (default) the level skips will be permitted.

lastdose

Integer representing the last experimented dose level.

Details

Details of the 3 dose-DLT relationship proposed models: "power" for the power model psy(s,a)=s^exp(a), "tangent" for the hyperbolic tangent model psy(s,a)= ((tanh(s)+1)/2)**a, "logistic" for the logistic model psy(s,a) = exp(3+a*s)/(1+exp(3+a*s)). Note: power and tangent models are equivalent after an appropriate transformation on the parameter.

Value

nextdose

An integer representing the next recommended dose to experiment.

mtd

If reached, an integer representing the MTD.

prob

Posterior DLTs probabilities.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

simCrm, ssimCrm

Examples

data<- CreData(5)
data<- updata(data,1,3,0)
data<- updata(data,2,3,1)
data<- updata(data,2,3,1)
data
Crm(data,prior=c(0.1,0.15,0.25,0.35,0.45),target=0.3,nextlevel="ntarget",nptmax=24,nmaxmtd=6)
data<- updata(data,3,3,2)
data
Crm(data,prior=c(0.1,0.15,0.25,0.35,0.45),target=0.3,nextlevel="ntarget",nptmax=24,nmaxmtd=6)

Density functions

Description

Density functions for the model parameter. fp(a,sd) is the normal density: 1/(sd*sqrt(2*pi))*exp(-(a^2)/(2*sd^2)). ft and fl are the exponential density (with a fixed rate = 1): exp(-a).

Usage

fp(a, sd)
ft(a)
fl(a)

Arguments

a

Parameter.

sd

Standard deviation.

Value

Numeric value of the computed density.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>


Likelihood functions

Description

Lp is the likelihood function for the power model psy(s,a)=s^exp(a). Lt is the likelihood function for the hyperbolic tangent model psy(s,a)= ((tanh(s)+1)/2)**a. Ll is the likelihood function for the logistic model psy(s,a) = exp(3+a*s)/(1+exp(3+a*s)).

Usage

Lp(a, data, sgl)
Lt(a, data, sgl)
Ll(a, data, sgl)

Arguments

a

Parameter.

data

CRM dataframe with a CreData() structure.

sgl

Dose level singleton.

Value

Numeric value of the computed likelihood.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>


Dose-Toxicity modelisation functions

Description

psip corresponds to the power model psy(s,a)=s^exp(a). psit corresponds to the hyperbolic tangent model psy(s,a)= ((tanh(s)+1)/2)**a. psil corresponds to the logistic model psy(s,a) = exp(3+a*s)/(1+exp(3+a*s)).

Usage

psip(sgl,a)
psit(sgl,a)
psil(sgl,a)

Arguments

sgl

Dose level singleton.

a

Parameter.

Value

Numeric value of the computed function.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>


Simulation of one dose-escalation study with the classical 3+3 design

Description

Given a true rates vector of DLT probabilities, the function simulate a 3+3 dose-escalation design.

Usage

sim3p3(truerate, seed = NULL)

Arguments

truerate

A nlevel-length vector of true rates for the DLTs.

seed

If not empty, the seed to use for random generation.

Value

data

Study data.

mtd

If reached, an integer representing the MTD level.

lastdose

An integer representing the last experimented dose.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

troisPtrois, ssim3p3

Examples

# A 3-dose study with 10%, 20% and 30% of true rates for toxicity
sim3p3(c(0.1,0.2,0.3))

Simulation of one dose-escalation study with the Continual Reassessment Method

Description

Given prior and true rates vectors of DLT probabilities, the function simulates a CRM dose-escalation design.

Usage

simCrm(prior, firstdose = NA, truerate = prior, cohortsize = 3, target = 1/3,nptmax = 24,
nmaxmtd = nptmax, nmaxdose = nptmax, sd = 1.34, approach = "bayes", model = "power",
method = "fpost", nextlevel = "ntarget", upskipping = F, downskipping = F, lastdose = NA,
graphic = F, seed = NULL)

Arguments

prior

Numeric vector of prior DLT probabilities.

firstdose

Integer representing the dose at which the first cohort will be treated.

truerate

A nlevel-length vector of true rates for the DLTs.

cohortsize

Size of the cohort. Default value = 3.

target

Target used for the MTD determination.

nptmax

Maximum number of patients to include in the study.

nmaxmtd

Maximum number of patients to be treated at the designated MTD. Assign a high value (=nptmax) to avoid such a stopping rule.

nmaxdose

Maximum number of patients to be treated at the same dose. Assign a high value (=nptmax) to avoid such a stopping rule.

sd

Standard deviation used in case of a normal distribution assumption for the parameter.

approach

Character indicating the estimation method: "bayes" (default value) for CRM or "mle" for CRML.

model

Character indicating the dose-DLT relationship model: "power", "tangent" or "logistic".

method

Estimation method for the posterior probabilities. "fpost" (default) estimates the mean of the posterior distribution of the paramater alpha (hat_alpha=E[alpha]) and uses it in psy(hat_alpha,...). "ppostp" and "pposts" directly estimate the mean of the posterior DLT probability. "ppostp" uses prior as singletons whereas "pposts" calculates appropriate singletons (see ail, ait or aip functions).

nextlevel

Character option used for determining the next dose level. "ntarget" (default) if the next level is chosen as the closest level to the desired target (may be higher than target). "utarget" if the next level is the closest level with the restriction to be lower than the target value.

upskipping

Boolean option used for determining the next dose level. If TRUE no level skip in escalation will be allowed. If FALSE (default) the level skips will be permitted.

downskipping

Boolean option used for determining the next dose level. If TRUE no level skip in desescalation will be allowed. If FALSE (default) the level skips will be permitted.

lastdose

Integer representing the last experimented dose level.

graphic

Boolean option for graphic generation.

seed

If not empty, the seed to use for random generation.

Value

data

Study data.

dose

Integer vector representing for each cohort the experimented dose levels.

nDLT

Integer vector representing for each cohort the number of observed DLTs.

mtd

If reached, an integer representing the MTD level.

lastdose

An integer representing the last experimented dose.

prob

Posterior DLT probabilities.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

Crm, ssimCrm

Examples

simCrm(c(0.1,0.2,0.3,0.35,0.45),firstdose=1,target=0.33)

Simulation of n dose-escalation study with the 3+3 design

Description

The ssim3p3 function simulates n dose-escalation study with the 3+3 design and provides summarized results.

Usage

ssim3p3(truerate, n, r = 2, seed = NULL)

Arguments

truerate

A nlevel-length vector of true rates for the DLTs.

n

Number of studies to simulate.

r

Integer, number of digits for percentages in output.

seed

If not empty, the seed to use for random generation.

Value

data

Summarized result in a "np1" view.

norecommendation

Percentage of studies with no recommendation for the MTD (in case of the first level is considered as toxic).

mean.npt

Mean number of enrolled patients.

mean.ndlt

Mean number of observed DLTs.

mean.lastdose

Mean last experimented dose level.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

troisPtrois, sim3p3

Examples

ssim3p3(c(0.1,0.2,0.25,0.35),100)

Simulation of n dose-escalation study with the Continual Reassessment Method

Description

The ssimCrm function simulates n dose-escalation study with the CRM and provides summarized results.

Usage

ssimCrm(prior, n, firstdose = NA, truerate = prior, cohortsize = 3, target = 1/3,
nptmax = 24, nmaxmtd = nptmax, nmaxdose = nptmax, sd = 1.34, approach = "bayes",
method = "fpost", model = "power", nextlevel = "ntarget", upskipping = F,
downskipping = F, r = 2, seed = NULL)

Arguments

prior

Numeric vector of prior DLT probabilities.

n

Number of studies to simulate.

firstdose

Integer representing the dose at which the first cohort will be treated.

truerate

A nlevel-length vector of true rates for the DLTs.

cohortsize

Size of the cohort. Default value = 3.

target

Target used for the MTD determination.

nptmax

Maximum number of patients to include in the study.

nmaxmtd

Maximum number of patients to be treated at the designated MTD. Assign a high value (=nptmax) to avoid such a stopping rule.

nmaxdose

Maximum number of patients to be treated at the same dose. Assign a high value (=nptmax) to avoid such a stopping rule.

sd

Standard deviation used in case of a normal distribution assumption for the parameter.

approach

Character indicating the estimation method: "bayes" (default value) for CRM or "mle" for CRML.

model

Character indicating the dose-DLT relationship model: "power", "tangent" or "logistic".

method

Estimation method for the posterior probabilities. "fpost" (default) estimates the mean of the posterior distribution of the paramater alpha (hat_alpha=E[alpha]) and uses it in psy(hat_alpha,...). "ppostp" and "pposts" directly estimate the mean of the posterior DLT probability. "ppostp" uses prior as singletons whereas "pposts" calculates appropriate singletons (see ail, ait or aip functions).

nextlevel

Character option used for determining the next dose level. "ntarget" (default) if the next level is chosen as the closest level to the desired target (may be higher than target). "utarget" if the next level is the closest level with the restriction to be lower than the target value.

upskipping

Boolean option used for determining the next dose level. If TRUE no level skip in escalation will be allowed. If FALSE (default) the level skips will be permitted.

downskipping

Boolean option used for determining the next dose level. If TRUE no level skip in desescalation will be allowed. If FALSE (default) the level skips will be permitted.

r

Integer, number of digits for percentages in output.

seed

If not empty, the seed to use for random generation.

Value

data

Summarized result in a "np1" view.

norecommendation

Percentage of studies with no recommendation for the MTD (in case of the first level is considered as toxic).

mean.npt

Mean number of enrolled patients.

mean.ndlt

Mean number of observed DLTs.

mean.lastdose

Mean last experimented dose level.

mean.prob

Mean of posterior DLT probabilities.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

Crm, simCrm

Examples

ssimCrm(c(0.1,0.2,0.3,0.35,0.45),firstdose=1,target=0.33,n=100)

Dose escalation with the 3+3 design

Description

The function gives the next level to include patients following a 3+3 design. Needs an updated input dataframe with the CreData() structure.

Usage

troisPtrois(data = data, lastdose)

Arguments

data

Study dataframe with CreData() structure.

lastdose

Integer representing the last experimented dose level.

Value

nextdose

An integer representing the next recommended dose to experiment.

mtd

If reached, an integer representing the MTD.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

sim3p3, ssim3p3

Examples

# Study initialization
data<- CreData(5,c("5 mg/m2","7 mg/m2","10 mg/m2","15 mg/m2","20 mg/m2"))
data

# Three patients are treated at the dose 1, without any observed DLT:
data<- updata(data,lastdose=1,npt=3,ndlt=0)
data

# 3+3 design
troisPtrois(data,lastdose=1)

Update the CRM dataframe after new patients' collected data

Description

This function uptdates the CRM dataframe (result of the CreData routine) with new treated patients or observed DLTs.

Usage

updata(data = data, lastdose, npt, ndlt)

Arguments

data

Dataframe to be updated.

lastdose

Integer representing the dose to be updated.

npt

Number of new treated patients.

ndlt

Number of DLTs among the npt patients.

Value

Updated dataframe.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. <https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. <https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. <https://doi.org/10.1002/sim.3682>

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. <https://doi.org/10.1191/1740774506cn134oa>

See Also

CreData

Examples

# Study initialization
data<- CreData(5,c("5 mg/m2","7 mg/m2","10 mg/m2","15 mg/m2","20 mg/m2"))
data

# Three patients are treated at the dose 1, without any observed DLT:
data<- updata(data,lastdose=1,npt=3,ndlt=0)
data